Prevalence and antibiotic sensitivity profiles of Staphylococcus aureus nasal carriage among preclinical and clinical medical students in a Malaysian university

Isabel Lim Fong, Efa Ezan binti Abdul Razak, Janice Tham Jia Mei, Nurul Akmal binti Safian, Ong Sheng Tian, Ng Poh Peng and Helmy Hazmi
Implication of Staph aureus infection
By Animals

- Animals develop resistant bacteria when treated with antibiotics.
- Fertilizer or water containing animal faces and drug-resistant bacteria is used on food crops.
- Drug-resistant bacteria can remain on meat from animals.
- Drug-resistant bacteria in the animal faces can remain on crops and be eaten. These bacteria can remain in the human gut.
- These bacteria can remain in the human gut.

By Human

- Can spread resistant bacteria if staying home.
- Can spread resistant bacteria in gut when treated with antibiotics.
- Medical care at Hospital
- Resistant bacteria may spread to other patients or indirectly on unclean hands of health care providers.
- Resistant bacteria may spread from unclean surfaces, toilets with the facility.
- Patients go home.
Worldwide prevalence of hospital-acquired methicillin-resistant Staphylococcus aureus

However, the highest prevalence rates of HA-MRSA and CA-MRSA in the world today is currently in Asia, with the range of 70 – 80% in certain regions. This could be attributed to healthy individuals who act as the medium to transfer MRSA into the communities.
Introduction

• Previous studies have shown that developing countries had lesser S. aureus carriers than in the developed countries.
• In Malaysia, 21% cases of bacteraemia were reported to be caused by MRSA

Klevens et al., 2007; Alvarez-Uria and Reddy 2012, Al-Talib et al., 2013; Dulon et al., 2014
Song et al., 2011; Chen and Huang, 2014; You et al., 2017, Boucher and Corey, 2008; Song et al., 2011
Deaths attributable to antimicrobial resistance every year by 2050

North America: 317,000
Latin America: 392,000
Europe: 390,000
Africa: 4,150,000
Asia: 4,730,000
Oceania: 22,000

Source: Review on Antimicrobial Resistance 2014
• Local studies on MRSA trend is lacking, especially in different sub communities. Understanding it may help in reducing the morbidity and mortality of MRSA.

• This study assessed the prevalence and antibiotic sensitivity profile of S. aureus and MRSA isolates from medical students
Materials and Methods

• Cross sectional studies involving 60 medical students – 24 preclinical and 36 clinical medical students.

• The preclinical students had little or no patient encounters while the clinical students were more involved in bedside teaching.

• Micro bacterial sampling:
 • Nasal swab + culturing
 • Tested for sensitivity by measuring the inhibition zone for erythromycin (15ug), fusidic acid (10ug), gentamicin (10ug) methicillin (5ug), penicillin (10ug) and vancomycin (30ug)
 • The final antibiotic resistance validation was done on Brilliance MRSA agar (*ThermoFisher Scientific*)
Result
Prevalence of S. aureus nasal carriers (N=60)

93%

S. aureus status among samples (N=60)

- Preclinical: 20 (4 SA positive), 36 (Clinical: 0 SA positive)
Antibiotic sensitivity on S. aureus (N=56)

- Gentamicin: 98.21%
- Vancomycin: 91.07%
- Methicillin: 75%
- Fusidic Acid: 69.64%
- Erythromycin: 53.57%
- Penicillin: 12.5%

Prevalence of MRSA: 17.8%
Antibiotic resistant pattern according to study phase (n=56)

- *P* = 0.357
- *P* = 0.691
- *P* = 0.218
- *P* = 0.082
- *P* = 0.042

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Clinical</th>
<th>Preclinical</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythromycin</td>
<td>15.0</td>
<td>44.4</td>
<td>0.082</td>
</tr>
<tr>
<td>Fusidic acid</td>
<td>10.0</td>
<td>33.3</td>
<td>0.042</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>15.4</td>
<td>0.0</td>
<td>0.357</td>
</tr>
<tr>
<td>Methicillin</td>
<td>19.4</td>
<td>15.0</td>
<td>0.780</td>
</tr>
<tr>
<td>Penicillin</td>
<td>88.9</td>
<td>85.0</td>
<td>0.218</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>11.1</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>
Discussion

• 93% of the samples collected were positive for *S. aureus* in contrast with previous studies conducted in West Malaysia at 26% and 28.7% and China at 46% respectively.

• The rate is higher compared to studies that includes hospital admitted patients.

• This is an important finding as high nasal Staph aureus colonization is a potential source of infection as colonization often precedes infection.

(Al-Talib et al., 2010; Al-Talib et al., 2013)
• 17.8% of S. aureus sampled were MRSA, which was lower than some studies reported among medical students in HUSM (21.5%). The prevalence of MRSA ranged between 17% (1986) to 44.1% (2007).

• This study demonstrated that duration of clinical exposure (preclinical vs clinical) did not increase the risk of being an MRSA carrier status. The prevalence of MRSA in both cohorts are almost similar.

• However, our observation noted that the inhibition zone for samples taken from clinical students were smaller compared to that from preclinical students.
• Penicillin is almost non effective towards Staph aureus (resistance rate >85%), despite a low MRSA nasal colonization.
• Penicillin is a widely used as a first line antibiotic, even higher in the private setting, where cold cases such as URTI are treated.
• Staph aureus was most sensitive to both gentamicin and vancomycin.
• Limitation: small sample size, thus the risk factors for acquisition of MRSA among medical students cannot be identified.
Conclusion

- This study demonstrated a high prevalence of Staph aureus nasal carriage among medical students.
- Although MRSA prevalence is comparatively low, the penicillin resistant Staph aureus was prevalent.
- Another larger sample size study in different settings is recommended to provide essential epidemiological information on MRSA.
Thank you